integral$39766$ - определение. Что такое integral$39766$
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое integral$39766$ - определение

EQUATIONS IN WHICH AN UNKNOWN FUNCTION APPEARS UNDER INTEGRALS
Integral equations; Singular integral equation; Singular integral equations; Numerical methods for integral equations; Integral Equations

Henstock–Kurzweil integral         
GENERALIZATION OF THE RIEMANN INTEGRAL
Henstock-Kurzweil Integral; Perron integral; Gauge integral; Henstock integral; Denjoy Integral; Henstock-Kurzweil-Stieltjes integral; Perron Integral; Henstock-Kurzweil-Stieltjes Integral; Generalized Riemann integral; Denjoy-Perron integral; Henstock-Kurzweil integral; H-K integral
In mathematics, the Henstock–Kurzweil integral or generalized Riemann integral or gauge integral – also known as the (narrow) Denjoy integral (pronounced ), Luzin integral or Perron integral, but not to be confused with the more general wide Denjoy integral – is one of a number of inequivalent definitions of the integral of a function. It is a generalization of the Riemann integral, and in some situations is more general than the Lebesgue integral.
Pettis integral         
Weak integral; Gelfand-Pettis integral; Gelfand–Pettis integral; Gelfand integral; Dunford integral
In mathematics, the Pettis integral or Gelfand–Pettis integral, named after Israel M. Gelfand and Billy James Pettis, extends the definition of the Lebesgue integral to vector-valued functions on a measure space, by exploiting duality.
Improper integral         
  • The improper integral<br/><math>\int_{0}^{\infty} \frac{dx}{(x+1)\sqrt{x}} = \pi</math><br/> has unbounded intervals for both domain and range.
  • The improper integral<br/><math>\int_{-1}^{1} \frac{dx}{\sqrt[3]{x^2}} = 6</math><br/> converges, since both left and right limits exist, though the integrand is unbounded near an interior point.
  • An improper Riemann integral of the second kind. The integral may fail to exist because of a [[vertical asymptote]] in the function.
LIMIT OF A DEFINITE INTEGRAL WITH AS ONE OR BOTH LIMITS APPROACH INFINITY OR VALUES AT WHICH THE INTEGRAND IS UNDEFINED
Improper Riemann integral; Improper integrals; Improper Integrals; Proper integral
In mathematical analysis, an improper integral is the limit of a definite integral as an endpoint of the interval(s) of integration approaches either a specified real number or positive or negative infinity; or in some instances as both endpoints approach limits. Such an integral is often written symbolically just like a standard definite integral, in some cases with infinity as a limit of integration.

Википедия

Integral equation

In mathematics, integral equations are equations in which an unknown function appears under an integral sign. In mathematical notation, integral equations may thus be expressed as being of the form:

where I i ( u ) {\displaystyle I^{i}(u)} is an integral operator acting on u. Hence, integral equations may be viewed as the analog to differential equations where instead of the equation involving derivatives, the equation contains integrals. A direct comparison can be seen with the mathematical form of the general integral equation above with the general form of a differential equation which may be expressed as follows:where D i ( u ) {\displaystyle D^{i}(u)} may be viewed as a differential operator of order i. Due to this close connection between differential and integral equations, one can often convert between the two. For example, one method of solving a boundary value problem is by converting the differential equation with its boundary conditions into an integral equation and solving the integral equation. In addition, Because one can convert between the two, differential equations in physics such as Maxwell's equations often have an analog integral and differential form. See also, for example, Green's function and Fredholm theory.